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we start with the observation that h, is a gradient:

hy= Vg, (B2)
Then from the divergence theorem

{l (m+h) h,dV = } hylm + k) - dS
“Sn

“fl

— [ ¢,V (m+k)dv. (B3)

The first integral on the right-hand side is zero because the
RF magnetic induction (m + k) must be parallel to the
coupling conductors, which define the surface S
The second integral is zero because V - (m + &) = 0.

A similar argument demonstrates that

[ h, - h,dv=0. (B4)
i ¥
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Further Studies on the Microwave Auditory
Effect

JAMES C. LIN, SENIOR MEMBER, IEEE

Abstract— Auditory signals generated in humans and animals who
are irradiated with short rectangular pulses of microwave energy
have been studied. Assuming that the effect arises from sound waves
generated in the tissues of the head by rapid thermal expansion
caused by microwave absorption, and using a technique described
previously, the governing equations are solved for a homogeneous
spherical model of the head under constrained-surface conditions.
The results indicate that the frequency of the auditory signal is a
function of the size and acoustic property of the head only. While the
amplitude and frequency of the microwave-induced sound are higher
than those predicted by the stress-free boundary condition formula-
tion, they are compatible with the experimental results reported to
date.

INTRODUCTION

N RECENT YEARS many investigators have studied the
auditory sensations produced in man by appropriately
modulated microwave energy [1]-[5]. Other investigators
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[3], [5]-[7] have shown that electrophysiologic auditory
aét'wity may be evoked by irradiating the brains ol labora-
tory animals with rectangular pulses of microwave energy.
Responses elicited in cats both by conventional acoustic
stimuli and by pulsed microwaves were similar and they
disappeared following disablement of the cochlea and fol-
lowing death. More recently, cochlear microphonics have
been recorded from the round window of cats and guinea
pigs during irradiation by pulse-modulated 918-MHz
microwaves. These results suggested that microwave
induced auditory sensation is transduced by a mechanism
similar to that responsible for conventional sound percep-
tion and that the primary site of interaction resides some-
where peripheral to the cochlea. A peripheral response 1o
microwave pulses should involve mechanical displacement
of the tissues of the head with resultant dynamic ellects on
the cochlea.

Several physical mechanisms have been suggested to
account for the conversion of microwaves to acoustic encr-
gies: these include radiation pressure, electrostriction, and
thermal expansion [3], [8]-[10]. A comparison of these three
mechanisms lor planar geometries revealed that the lorces ol
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